Физиология сердечной деятельности

Автоматизм и проводимость миокарда

Способность сердца сокращаться в течение всей жизни, не обнаруживая признаков утомления, т. е. автоматизм сердца, связывали вначале с влияниями нервной системы. Однако постепенно накапливались факты в пользу того, что нейрогенная гипотеза автоматизма сердца, справедливая в отношении многих беспозвоночных животных, не объясняет свойств миокарда у позвоночных. Особенности сокращения сердечной мышцы у последних связывали с функциями атипической ткани миокарда. В 50-х гг. XIX века в опытах Станниуса было показано, что перевязка сердца лягушки на границе между венозным синусом и предсердиями приводит к временной остановке сокращений остальных отделов сердца. Через 30–40 минут сокращения восстанавливаются, однако ритм сокращений области венозного синуса и остальных отделов сердца становится рассогласованным. После наложения второй лигатуры по атриовентикулярной линии прекращается сокращение желудочков с последующим его восстановлением в ритме, не совпадающим, однако, с ритмом сокращений предсердий. Наложение третьей лигатуры в области нижней трети сердца приводит к необратимой остановке сокращений сердца. В дальнейшем было показано, что охлаждение сравнительно небольшого участка в области устья полых вен приводит к остановке сердца. Результаты этих опытов указывали на то, что в области правого предсердия, а также на границе предсердий и желудочков располагаются участки, ответственные за возбуждение сердечной мышцы. Удалось показать, что сердце человека, извлеченное из трупа и помещенное в теплый физиологический раствор, в результате массажа восстанавливает сократительную активность. Доказано, что автоматизм сердца имеет миогенную природу и обусловлен спонтанной активностью части клеток его атипической ткани. Указанные клетки образуют скопления в определенных участках миокарда. Наиболее важным в функциональном отношении из них является синусный или синоатриальный узел, расположенный между местом впадения верхней полой вены и ушком правого предсердия.

В нижней части межпредсердной перегородки, непосредственно над местом прикрепления септальной створки трехстворчатого клапана, располагается атриовентрикулярный узел. От него отходит пучок атипических мышечных волокон, который пронизывает фиброзную перегородку между предсердиями и переходит в узкий длинный мышечный тяж, заключенный в межжелудочковую перегородку. Он называется атриовентрикулярным пучком, или пучком Гиса. Пучок Гиса разветвляется, образуя две ножки, от которых приблизительно на уровне середины перегородки отходят волокна Пуркинье, также образованные атипической тканью и формирующие субэндокардиальную сеть в стенках обоих желудочков (рис. 1).

Функция проводимости в сердце имеет электротоническую природу. Она обеспечивается низким электрическим сопротивлением щелевидных контактов (нексусов) между элементами атипического и рабочего миокарда, а также в области вставочных пластинок, разделяющих кардиомиоциты. В результате, сверхпороговое раздражение любого участка вызывает генерализованное возбуждение всего миокарда. Это позволяет считать ткань сердечной мышцы, морфологически разделенную на отдельные клетки, функциональным синцитием.

Рис. 1. Проводящая система сердца

Возбуждение миокарда зарождается в синоатриальном узле, который называют водителем ритма, или пейсмекером первого порядка, и далее распространяется на мускулатуру предсердий с последующим возбуждением атриовентрикулярного узла, который является водителем ритма второго порядка. Скорость распространения возбуждения в предсердиях составляет в среднем 1 м/с. При переходе возбуждения на атриовентрикулярный узел имеет место так называемая атриовентрикулярная задержка, составляющая 0.04–0.06 с. Природа атриовентрикулярной задержки состоит в том, что проводящие ткани синоатриального и атриовентрикулярного узлов контактируют не непосредственно, а через волокна рабочего миокарда, для которых характерна более низкая скорость проведения возбуждения. Последнее распространяется далее по ножкам пучка Гиса и волокнам Пуркинье, передаваясь на мускулатуру желудочков, которую оно охватывает со скоростью 0.75–4.0 м/с. В силу особенностей расположения волокон Пуркинье, возбуждение сосочковых мышц происходит несколько раньше, чем оно охватывает стенки желудочков. Благодаря этому, нити, удерживающие трехстворчатый и митральный клапаны, оказываются натянутыми раньше, чем на них начинает действовать сила сокращения желудочков. По той же причине наружная часть стенки желудочков у верхушки сердца возбуждается несколько раньше участков стенки, прилежащих к ее основанию. Указанные сдвиги во времени крайне невелики, и обычно принимается, что весь миокард желудочков охватывается возбуждением одновременно. Таким образом, волна возбуждения последовательно охватывает различные отделы сердца в направлении от правого предсердия к верхушке. Данное направление отражает градиент автоматии сердца.

Мембранная природа автоматии сердца

Возбудимость клеток проводящей системы и рабочего миокарда имеет ту же биоэлектрическую природу, что и в поперечнополосатых мышцах. Наличие заряда на мембране здесь также обеспечивается разностью концентраций ионов калия и натрия возле ее внешней и внутренней поверхности и избирательной проницаемостью мембраны для этих ионов. В покое мембрана кардиомиоцитов проницаема для ионов калия и почти непроницаема для натрия. В результате диффузии ионы калия выходят из клетки и создают положительный заряд на ее поверхности. Внутренняя сторона мембраны становится электроотрицательной по отношению к наружной.

В клетках атипического миокарда, обладающих автоматией, мембранный потенциал способен спонтанно уменьшаться до критического уровня, что приводит к генерации потенциала действия. В норме ритм сердечных сокращений задается всего несколькими наиболее возбудимыми клетками синоатриального узла, которые называются истинными водителями ритма, или пейсмекерными клетками. В этих клетках во время диастолы мембранный потенциал, достигнув максимального значения, соответствующего величине потенциала покоя (60–70 мВ), начинает постепенно снижаться. Этот процесс называется медленной спонтанной диастолической деполяризацией. Она продолжается до того момента, когда мембранный потенциал достигает критического уровня (40–50 мВ), после чего возникает потенциал действия.

Для потенциала действия пейсмекерных клеток синоатриального узла характерны малая крутизна подъема, отсутствие фазы ранней быстрой реполяризации, а также слабая выраженность «овершута» и фазы «плато». Медленная реполяризация плавно сменяется быстрой. Во время этой фазы мембранный потенциал достигает максимальной величины, после чего вновь возникает фаза медленной спонтанной деполяризации (рис. 2).

Частота возбуждения пейсмекерных клеток у человека составляет в покое 70–80 в минуту при амплитуде потенциала действия 70–80 мВ. Во всех остальных клетках проводящей системы потенциал действия в норме возникает под влиянием возбуждения, приходящего из синоатриального узла. Такие клетки называют латентными водителями ритма. Потенциал действия в них возникает раньше, чем их собственная медленная спонтанная диастолическая деполяризация достигает критического уровня. Латентные водители ритма принимают на себя ведущую функцию только при условии разобщения с синоатриальным узлом. Именно этот эффект наблюдается в упоминавшихся выше опытах Станниуса. Частота спонтанной деполяризации таких клеток у человека составляет 30–40 в минуту (рис. 3).

Рис. 2. Развитие потенциала действия истинного водителя ритма автоматии.
Во время диастолы спонтанная деполяризация уменьшает мембранный потенциал (Е мах)
до критического уровня (Е кр) и вызывает потенциал действия

Рис. 3. Развитие потенциала действия истинного (а) и латентного (б) водителей ритма автоматии.
Скорость медленной диастолической деполяризации истинного водителя ритма (а) больше, чем у латентного (б)

Спонтанная медленная диастолическая деполяризация обусловлена совокупностью ионных процессов, связанных с функциями плазматических мембран. Среди них ведущую роль играют медленное уменьшение калиевой и повышение натриевой и кальциевой проводимости мембраны во время диастолы, параллельно чему происходит падение активности электрогенного натриевого насоса. К началу диастолы проницаемость мембраны для калия на короткое время повышается, и мембранный потенциал покоя приближается к равновесному калиевому потенциалу, достигая максимального диастолического значения. Затем проницаемость мембраны для калия уменьшается, что и приводит к медленному снижению мембранного потенциала до критического уровня. Одновременное увеличение проницаемости мембраны для натрия и кальция приводит к поступлению этих ионов в клетку, что также способствует возникновению потенциала действия. Снижение активности электрогенного насоса дополнительно уменьшает выход натрия из клетки и, тем самым, облегчает деполяризацию мембраны и возникновение возбуждения.

Полное оглавление
раздела для врачей
 


Сайт медицины критических состояний
www.critical.ru