Физиология сердечной деятельности

Регуляция сердечной деятельности и сердечного выброса

Общие принципы регуляции сердечного выброса

Рассматривая роль сердца в регуляции кровоснабжения органов и тканей, необходимо иметь в виду, что от величины сердечного выброса могут зависеть два необходимых условия для обеспечения адекватной текущим задачам нутритивной функции системы кровообращения: обеспечение оптимальной величины общего количества циркулирующей крови и поддержание (совместно с сосудами) определенного уровня среднего артериального давления, необходимого для удержания физиологических констант в капиллярах. При этом обязательным условием нормальной работы сердца является равенство притока и выброса крови. Решение этой задачи обеспечивается, в основном, механизмами, обусловленными свойствами самой сердечной мышцы. Проявления этих механизмов называют миогенной ауторегуляцией насосной функции сердца. Существуют два способа ее реализации: гетерометрическая – осуществляется в ответ на изменение длины волокон миокарда, гомеометрическая – осуществляется при их сокращениях в изометрическом режиме.

Миогенные механизмы регуляции деятельности сердца

Изучение зависимости силы сокращений сердца от растяжения его камер показало, что сила каждого сердечного сокращения зависит от величины венозного притока и определяется конечной диастолической длиной волокон миокарда. В результате было сформулировано правило, вошедшее в физиологию как закон Старлинга: «Сила сокращения желудочков сердца, измеренная любым способом, является функцией длины мышечных волокон перед сокращением».

Гетерометрический механизм регуляции характеризуется высокой чувствительностью. Его можно наблюдать при введении в магистральные вены всего 1–2 % общей массы циркулирующей крови, тогда как рефлекторные механизмы изменений деятельности сердца реализуются при внутривенных введениях не менее 5–10 % крови.

Инотропные влияния на сердце, обусловленные эффектом Франка–Старлинга, могут проявляться при различных физиологических состояниях. Они играют ведущую роль в увеличении сердечной деятельности при усиленной мышечной работе, когда сокращающиеся скелетные мышцы вызывают периодическое сжатие вен конечностей, что приводит к увеличению венозного притока за счет мобилизации резерва депонированной в них крови. Отрицательные инотропные влияния по указанному механизму играют существенную роль в изменениях кровообращения при переходе в вертикальное положение (ортостатическая проба). Эти механизмы имеют большое значение для согласования изменений сердечного выброса и притока крови по венам малого круга, что предотвращает опасность развития отека легких. Гетерометрическая регуляция сердца может обеспечить компенсацию циркуляторной недостаточности при его пороках.

Термином «гомеометрическая регуляция» обозначают миогенные механизмы, для реализации которых не имеет значения степень конечно-диастолического растяжения волокон миокарда. Среди них наиболее важным является зависимость силы сокращения сердца от давления в аорте (эффект Анрепа). Этот эффект состоит в том, что увеличение давления в аорте первоначально вызывает снижение систолического объема сердца и увеличение остаточного конечного диастолического объема крови, вслед за чем происходит увеличение силы сокращений сердца, и сердечный выброс стабилизируется на новом уровне силы сокращений.

Таким образом, миогенные механизмы регуляции деятельности сердца могут обеспечивать значительные изменения силы его сокращений. Особенно существенное практическое значение эти факты приобрели в связи с проблемой трансплантации и долгосрочного протезирования сердца. Показано, что у людей с пересаженным и лишенным нормальной иннервации сердцем в условиях мышечной работы имеет место увеличение ударного объема более чем на 40 %.

Иннервация сердца

Сердце представляет собой обильно иннервированный орган. Большое количество рецепторов, расположенных в стенках сердечных камер и в эпикарде, позволяет говорить о нем как о рефлексогенной зоне. Наибольшее значение среди чувствительных образований сердца имеют две популяции механорецепторов, сосредоточенных, главным образом, в предсердиях и левом желудочке: А-рецепторы реагируют на изменение напряжения сердечной стенки, а В-рецепторы возбуждаются при ее пассивном растяжении. Афферентные волокна, связанные с этими рецепторами, идут в составе блуждающих нервов. Свободные чувствительные нервные окончания, расположенные непосредственно под эндокардом, представляют собой терминали афферентных волокон, проходящих в составе симпатических нервов. Считается, что именно эти структуры участвуют в развитии болевого синдрома с сегментарной иррадиацией, характерного для приступов ишемической болезни сердца, включая инфаркт миокарда.

Эфферентная иннервация сердца осуществляется при участии обоих отделов вегетативной нервной системы. Тела симпатических преганглионарных нейронов, участвующих в иннервации сердца, располагаются в сером веществе боковых рогов трех верхних грудных сегментов спинного мозга. Преганглионарные волокна направляются к нейронам верхнего грудного (звездчатого) симпатического ганглия. Постганглионарные волокна этих нейронов вместе с парасимпатическими волокнами блуждающего нерва образуют верхний, средний и нижний сердечные нервы. Симпатические волокна пронизывают весь орган и иннервируют не только миокард, но и элементы проводящей системы.

Тела парасимпатических преганглионарных нейронов, участвующих в иннервации сердца, располагаются в продолговатом мозге. Их аксоны идут в составе блуждающих нервов. После вхождения блуждающего нерва в грудную полость от него отходят веточки, которые включаются в состав сердечных нервов.

Дериваты блуждающего нерва, проходящие в составе сердечных нервов, представляют собой парасимпатические преганглионарные волокна. С них возбуждение передается на интрамуральные нейроны и далее – преимущественно на элементы проводящей системы. Влияния, опосредованные правым блуждающим нервом, адресованы, в основном, клетками синоатриального, а левым – атриовентрикулярного узла. Прямого влияния на желудочки сердца блуждающие нервы не оказывают.

В сердце располагаются многочисленные интрамуральные нейроны, как одиночно расположенные, так и собранные в ганглии. Основная масса этих клеток расположена непосредственно вблизи атриовентрикулярного и синоатриального узлов, образуя вместе с массой эфферентных волокон, лежащих внутри межпредсердной перегородки, внутрисердечное нервное сплетение. В последнем имеются все элементы, необходимые для замыкания местных рефлекторных дуг, поэтому интрамуральный нервный аппарат сердца иногда относят к метасимпатической системе.

Иннервируя ткань водителей ритма, вегетативные нервы способны менять их возбудимость, тем самым вызывая изменения частоты генерации потенциалов действия и сокращений сердца (хронотропный эффект). Нервные влияния могут изменять скорость электротонической передачи возбуждения и, следовательно, длительности фаз сердечного цикла. Такие эффекты называют дромотропными.

Поскольку действие медиаторов вегетативной нервной системы заключается в изменении уровня циклических нуклеотидов и энергетического обмена, вегетативные нервы в целом способны влиять и на силу сердечных сокращений (инотропный эффект). В лабораторных условиях получен эффект изменения величины порога возбуждения кардиомиоцитов под действием нейромедиаторов, его обозначают как батмотропный.

Перечисленные пути воздействия нервной системы на сократительную активность миокарда и насосную функцию сердца представляют собой хотя и исключительно важные, но вторичные по отношению к миогенным механизмам, модулирующие влияния.

Подробно изучено влияние на сердце блуждающего нерва. Результатом стимуляции последнего является отрицательный хронотропный эффект, на фоне которого проявляются также отрицательные дромотропный и инотропный эффекты. Существуют постоянные тонические влияния на сердце со стороны бульбарных ядер блуждающего нерва: при его двусторонней перерезке частота сердцебиений возрастает в 1.5–2.5 раза. При длительном сильном раздражении влияние блуждающих нервов на сердце постепенно ослабевает или прекращается, что получило название «эффекта ускользания» сердца из-под влияния блуждающего нерва.

Симпатические влияния на сердце были впервые описаны в форме положительного хронотропного эффекта. Несколько позднее показана возможность и положительного инотропного эффекта стимуляции симпатических нервов сердца. Сведения о наличии тонических влияний симпатической нервной системы на миокард касаются, в основном, хронотропных эффектов.

Менее изученным остается участие в регуляции сердечной деятельности интракардиальных ганглиозных нервных элементов. Известно, что они обеспечивают передачу возбуждения с волокон блуждающего нерва на клетки синоатриального и атриовентрикулярного узлов, выполняя функцию парасимпатических ганглиев. Описаны инотропные, хронотропные и дромотропные эффекты, полученные при стимуляции этих образований в условиях эксперимента на изолированном сердце. Значение этих эффектов в естественных условиях остается неясным. Поэтому основные представления о нейрогенной регуляции сердца основаны на данных экспериментальных исследований эффектов стимуляции эфферентных сердечных нервов.

Электрическая стимуляция блуждающего нерва вызывает урежение или прекращение сердечной деятельности вследствие торможения автоматической деятельности водителей ритма синоатриального узла. Выраженность этого эффекта зависит от силы и частоты раздражения блуждающего нерва. По мере увеличения силы раздражения отмечается переход от небольшого замедления синусового ритма до полной остановки сердца.

Отрицательный хронотропный эффект раздражения блуждающего нерва связан с угнетением (замедлением) генерации импульсов в водителе ритма сердца синусного узла. При раздражении блуждающего нерва в его окончаниях выделяется медиатор – ацетилхолин. В результате взаимодействия ацетилхолина с мускариночувствительными рецепторами сердца повышается проницаемость поверхностной мембраны клеток водителей ритма для ионов калия. Как следствие этого, возникает гиперполяризация мембраны, которая замедляет (подавляет) развитие медленной спонтанной диастолической деполяризации, и поэтому мембранный потенциал позже достигает критического уровня. Это приводит к урежению ритма сокращений сердца.

При сильных раздражениях блуждающего нерва диастолическая деполяризация подавляется, возникает гиперполяризация водителей ритма и полная остановка сердца. Развитие гиперполяризации в клетках водителя ритма снижает их возбудимость, затрудняет возникновение очередного автоматического потенциала действия и, тем самым, приводит к замедлению или даже остановке сердца. Стимуляция блуждающего нерва, усиливая выход калия из клетки, увеличивает мембранный потенциал, ускоряет процесс реполяризации и при достаточной силе раздражающего тока укорачивает длительность потенциала действия клеток водителя ритма.

При вагусных воздействиях имеет место уменьшение амплитуды и длительности потенциала действия кардиомиоцитов предсердия. Отрицательный инотропный эффект связан с тем, что уменьшенный по амплитуде и укороченный потенциал действия не способен возбудить достаточное количество кардиомиоцитов. Кроме того, вызванное ацетилхолином повышение калиевой проводимости противодействует потенциалзависимому входящему току кальция и проникновению его ионов внутрь кардиомиоцита. Холинергический медиатор ацетилхолин может также угнетать АТФ-азную активность миозина и, таким образом, уменьшать величину сократимости кардиомиоцитов. Возбуждение блуждающего нерва приводит к повышению порога раздражения предсердий, подавлению автоматии и замедлению проводимости атриовентрикулярного узла. Указанное замедление проводимости при холинергических влияниях может вызвать частичную или полную атриовентрикулярную блокаду.

Электрическая стимуляция волокон, отходящих от звездчатого ганглия, вызывает ускорение ритма сердца, увеличение силы сокращений миокарда. Под влиянием возбуждения симпатических нервов скорость медленной диастолической деполяризации повышается, снижается критический уровень деполяризации клеток водителей ритма синоатриального узла, уменьшается величина мембранного потенциала покоя. Подобные изменения увеличивают скорость возникновения потенциала действия в клетках водителей ритма сердца, повышают его возбудимость и проводимость. Эти изменения электрической активности связаны с тем, что выделяющийся из окончаний симпатических волокон медиатор норадреналин взаимодействует с b1- адренорецепторами поверхностной мембраны клеток, что приводит к повышению проницаемости мембран для ионов натрия и кальция, а также уменьшению проницаемости для ионов калия.

Ускорение медленной спонтанной диастолической деполяризации клеток водителя ритма, увеличение скорости проведения в предсердиях, атриовентрикулярном узле и желудочках приводит к улучшению синхронности возбуждения и сокращения мышечных волокон и к увеличению силы сокращения миокарда желудочков. Положительный инотропный эффект связан также с повышением проницаемости мембраны кардиомиоцитов для ионов кальция. При увеличении входящего тока кальция возрастает степень электромеханического сопряжения, в результате чего увеличивается сократимость миокарда.

Рефлекторные влияния на сердце

Воспроизвести рефлекторные изменения деятельности сердца, в принципе, можно с рецепторов любого анализатора. Однако далеко не каждая воспроизводимая в условиях эксперимента нейрогенная реакция сердца имеет реальное значение для его регуляции. Кроме того, многие висцеральные рефлексы оказывают на сердце побочное или неспецифическое действие. Соответственно, выделены три категории кардиальных рефлексов: собственные, вызываемые раздражением рецепторов сердечно-сосудистой системы; сопряженные, обусловленные активностью любых других рефлексогенных зон; неспецифические, которые воспроизводятся в условиях физиологического эксперимента, а также в патологии.

Наибольшее физиологическое значение имеют собственные рефлексы сердечно-сосудистой системы, которые возникают чаще всего при раздражении барорецепторов магистральных артерий в результате изменения системного давления. Так, при снижении давления в аорте и каротидном синусе происходит рефлекторное увеличение частоты сердцебиения.

Особую группу собственных кардиальных рефлексов представляют те из них, которые возникают в ответ на раздражение артериальных хеморецепторов изменением напряжения кислорода в крови. В условиях гипоксемии развивается рефлекторная тахикардия, а при дыхании чистым кислородом – брадикадия. Эти реакции отличаются исключительно высокой чувствительностью: у человека увеличение частоты сердцебиения наблюдается уже при снижении напряжения кислорода всего на 3 %, когда никаких признаков гипоксии в организме обнаружить еще невозможно.

Собственные рефлексы сердца проявляются и в ответ на механическое раздражение сердечных камер, в стенках которых находится большое количество барорецепторов. К их числу относят рефлекс Бейнбриджа, описанный как тахикардия, развивающаяся в ответ на внутривенное введение крови при неизменном артериальном давлении. Считается, что эта реакция является рефлекторным ответом на раздражение барорецепторов полых вен и предсердия, поскольку она устраняется при денервации сердца. В то же время доказано существование отрицательных хронотропных и инотропных реакций сердца рефлекторной природы, возникающих в ответ на раздражение механорецепторов как правого, так и левого сердца. Показана также физиологическая роль интракардиальных рефлексов. Суть их состоит в тем, что увеличение исходной длины волокон миокарда приводит к усилению сокращений не только растягиваемого отдела сердца (в соответствии с законом Старлинга), но и к усилению сокращений других отделов сердца, не подвергавшихся растяжению.

Описаны рефлексы с сердца, оказывающие влияние на функцию других висцеральных систем. К их числу относят, например, кардиоренальный рефлекс Генри–Гауэра, который представляет собой увеличение диуреза в ответ на растяжение стенки левого предсердия.

Собственные кардиальные рефлексы составляют основу нейрогенной регуляции деятельности сердца. Хотя, как следует из представленного материала, реализация его насосной функции возможна и без участия нервной системы.

Сопряженные кардиальные рефлексы представляют собой эффекты раздражения рефлексогенных зон, не принимающих прямого участия в регуляции кровообращения. К числу таких рефлексов относят рефлекс Гольца, который проявляется в форме брадикардии (до полной остановки сердца) в ответ на раздражение механорецепторов брюшины или органов брюшной полости. Возможность проявления такой реакции учитывается при проведении оперативных вмешательств на брюшной полости, при нокауте у боксеров и т. д. Сходные с упомянутыми изменения сердечной деятельности наблюдаются при раздражении некоторых экстерорецепторов. Так, например, рефлекторная остановка сердца может иметь место при резком охлаждении кожи области живота. Именно такую природу нередко имеют несчастные случаи при нырянии в холодную воду. Характерным примером сопряженного соматовисцерального кардиального рефлекса является рефлекс Данини–Ашнера, который проявляется в виде брадикардии при надавливании на глазные яблоки. К числу сопряженных кардиальных рефлексов относят также все без исключения условные рефлексы, влияющие на сердечную деятельность. Таким образом, сопряженные рефлексы сердца, не являясь составной частью общей схемы нейрогенной регуляции, могут оказывать существенное влияние на его деятельность.

Определенное влияние на сердце могут оказывать и эффекты неспецифического раздражения некоторых рефлексогенных зон. В эксперименте особенно изученным является рефлекс Бецольда–Яриша, который развивается в ответ на внутрикоронарное введение никотина, алкоголя и некоторых растительных алкалоидов. Сходную природу имеют так называемые эпикардиальный и коронарный хеморефлексы. Во всех этих случаях возникают рефлекторные ответы, получившие название триады Бецольда–Яриша (брадикардия, гипотензия, апноэ).

Замыкание большинства кардиорефлекторных дуг происходит на уровне продолговатого мозга, где находятся: ядро солитарного тракта, к которому подходят афферентные пути рефлексогенных зон сердечно-сосудистой системы; ядра блуждающего нерва и вставочные нейроны бульбарного кардиоваскулярного центра. В то же время реализация рефлекторных влияний на сердце в естественных условиях всегда происходит при участии вышележащих отделов центральной нервной системы (рис. 1). Существуют различные по знаку инотропные и хронотропные влияния на сердце со стороны мезенцефальных адренергических ядер (голубое пятно, черная субстанция), гипоталамуса (паравентрикулярное и супраоптическое ядра, мамиллярные тела) и лимбической системы. Имеют место и кортикальные влияния на сердечную деятельность, среди которых особое значение имеют условные рефлексы, такие, например, как положительный хронотропный эффект при предстартовом состоянии. Достоверных данных о возможности произвольного управления человеком сердечной деятельностью получить не удалось.

Рис. 1. Эфферентная иннервация сердца.
Сц – сердце; Гф – гипофиз; Гт – гипоталамус; Пм – продолговатый мозг;
Цсд – бульбарный центр сердечно-сосудистой системы; К – кора больших полушарий;
Гл – симпатические ганглии; См – спинной мозг; Th – грудные сегменты.

Воздействия на все перечисленные структуры ЦНС, особенно имеющие стволовую локализацию, могут вызывать выраженные изменения сердечной деятельности. Такую природу имеет, например, цереброкардиальный синдром при некоторых формах нейрохирургической патологии. Нарушения сердечной деятельности могут иметь место и при функциональных расстройствах высшей нервной деятельности по невротическому типу.

Гуморальные влияния на сердце

Прямое или опосредованное действие на сердце оказывают практически все биологически активные вещества, содержащиеся в плазме крови. В то же время круг фармакологических агентов, осуществляющих гуморальную регуляцию сердца, в подлинном смысле этого слова, достаточно узок. Такими веществами являются катехоламины, выделяемые мозговым веществом надпочечников – адреналин, норадреналин и дофамин. Действие этих гормонов опосредуется b-адренорецепторами кардиомиоцитов, что и определяет конечный результат их влияний на миокард. Он аналогичен симпатической стимуляции и заключается в активации фермента аденилатциклазы и усилении синтеза циклического АМФ (3,5-циклического аденозинмонофосфата), с последующей активацией фосфорилазы и повышением уровня энергетического обмена. Такое действие на пейсмекерную ткань вызывает положительный хронотропный, а на клетки рабочего миокарда – положительный инотропный эффекты. Побочным действием катехоламинов, усиливающим инотропный эффект, является повышение проницаемости мембран кардиомиоцитов к ионам кальция.

Действие других гормонов на миокард неспецифическое. Известен инотропный эффект действия глюкагона, реализуемый через активацию аденилатциклазы. Положительное инотропное действие на сердце оказывают также гормоны коры надпочечников (кортикостероиды) и ангиотензин. Йодсодержащие гормоны щитовидной железы увеличивают частоту сердечных сокращений. Действие перечисленных (как и других) гормонов может реализовываться опосредованно, например, через влияния на активность симпатоадреналовой системы.

Сердце проявляет чувствительность и к ионному составу протекающей крови. Катионы кальция повышают возбудимость клеток миокарда как за счет участия в сопряжении возбуждения и сокращения, так и за счет активации фосфорилазы. Повышение концентрации ионов калия по отношению к норме, составляющей 4 ммоль/ л, приводит к снижению величины потенциала покоя и увеличению проницаемости мембран для этих ионов. Возбудимость миокарда и скорость проведения возбуждения при этом возрастают. Обратные явления, часто сопровождающиеся нарушениями ритма, имеют место при недостатке в крови калия, в частности, в результате применения некоторых диуретических препаратов. Такие соотношения характерны для сравнительно небольших изменений концентрации катионов калия, при ее увеличении более чем в два раза возбудимость и проводимость миокарда резко снижаются. На этом эффекте основано действие кардиоплегических растворов, которые используются в кардиохирургии для временной остановки сердца. Угнетение сердечной деятельности наблюдается и при повышении кислотности внеклеточной среды.

Гормональная функция сердца

Вокруг миофибрилл предсердий обнаружены гранулы, подобные тем, которые имеются в щитовидной железе или аденогипофизе. В этих гранулах образуется группа гормонов, которые высвобождаются при растяжении предсердий, стойком повышении давления в аорте, нагрузке организма натрием, повышении активности блуждающих нервов. Отмечены следующие эффекты предсердных гормонов: а) снижение ОПСС, МОК и АД; б) увеличение гематокрита; в) увеличение клубочковой фильтрации и диуреза; г) угнетение секреции ренина, альдостерона, кортизола и вазопрессина; д) снижение концентрации в крови адреналина; е) уменьшение освобождения норадреналина при возбуждении симпатических нервов.

Полное оглавление
раздела для врачей
 


Сайт медицины критических состояний
www.critical.ru